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Abstract

The largest source of information is the WWW. Gathering of novel
information from this network constitutes a real challenge for artificial in-
telligence (AI) methods. Large search engines do not offer a satisfactory
solution, their indexing cycle is long and creates a time lag of about one
month. Moreover, sometimes search engines offer a huge amount of doc-
uments, which is hard to constrain and to increase the ratio of relevant
information. A novel AI-assisted surfing method, which highlights links
during surfing is studied here. The method makes use of (i) ‘experts’,
i.e. pre-trained classifiers, forming the long-term memory of the system,
(ii) relative values of experts and value estimation of documents based
on recent choices of the users. Value estimation adapts fast and forms
the short-term memory of the system. (iii) Neighboring documents are
downloaded, their values are estimated and valuable links are highlighted.
Efficiency of the idea is tested on an artificially generated sample set, on
a downloaded portion of the Internet and in real Internet searches using
different models of the user. All experiments show that surfing based fil-
tering can efficiently highlight 10-20% of the documents in about 5 to 10
steps, or less.
Keywords: Internet, search, intelligent crawler, reinforcement learning,
adaptivity, information filtering

1 Introduction

The number of documents on the World Wide Web is increasing quickly; it
has passed 1 billion in 2001 and might reach 10 billions soon. The number of
new documents published on the WWW is much over 1 million per day. The
number of documents that change on a daily basis, e.g. documents about news,
business, entertainment, etc., is even larger. The ever-increasing growth presents
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Budapest, Hungary H-1117.
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a considerable challenge in finding, gathering and ordering information on the
web. Gathering of novel information is not efficient with conventional search
engines. First, the information they present is not up-to-date. Second, these
engines may offer hundreds or even thousands of documents, many of which are
not really relevant. Other documents could be ‘traps’, e.g., by making use of
particular (sometimes fake) keywords, or being simply collections of documents
indexed in every ‘dimension’ of the web.

Specialized crawlers, possibly intelligent personalized crawlers may circum-
vent these problems. The development of such crawlers represents a real chal-
lenge for methods of artificial intelligence and has been attempted by several
research groups [4, 12, 10, 13]. Intelligent crawlers can serve as pre-filtering
methods. Our question is how an intelligent crawler could serve human intelli-
gence to search and find information.

Our aim was to establish a connection between human intelligence and arti-
ficial intelligence. While the user surfs the web, our system tries to choose the
links which are likely the most relevant to him. The level of relevance – the
value – of a document is estimated by the previous decisions of the user. With
this method, the best links can be highlighted in the browser, so as to make the
choice between the links easier.

To this end, we developed a set of artificial ‘experts’ (classifiers) with differ-
ent methods. Our solution is an alternative to other expert methods, such as the
method of mixture of experts and the method of product of experts. Mixture of
experts represent a collection (union) of example sets [7]. Product of experts,
on the other hand, makes use of multiplicative probability estimation [6].

The method studied here is favored because of its fast adaptation. It has the
following main characteristics. We used a set of text classifiers, which had rather
sharp decision surfaces. In turn, the output of the classifiers is a vector with
values close to +1 or −1. Output +1 (−1) means that the input belongs (does
not belong) to the classifier. In a given decision problem either the positive
(within class) or the negative (not within class) outputs of the classifiers could
be of importance. It is also possible that neither of these outputs has any
relevance to the actual decision making problem. In turn, an expert should
have a weight, which can assume positive, zero or negative values and these
weights can serve value estimation for each document. Value estimation can
be improved by reinforcing feedback provided by the user [11]. The decision to
highlight a document means that the document is in the best p% of available
documents according to the actual value estimation. The actual value estimation
is based on the user’s previous choices, whereas percentage p can be set by the
user. Classifiers together with their learned weights can be used to estimate the
value of visited and novel documents. These estimated values of neighboring
documents (to which the links of the actual and the previous documents point
to) can be used for highlighting during surfing.

The adaptation algorithm works as follows. The system maintain a weight
vector estimation of the user’s goal. In every step all the neighboring documents
are downloaded, their values are estimated, and – based on which document was
selected by the user – the weight vector is updated.
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The paper is organized as follows. First, our methods are described in Section
2. This section contains the description of the databases used for testing as well
as the description of the adaptation algorithms studied. Section 3 describes the
results of the investigations. This section is followed by the discussion on the
found properties of different methods (Section 4). Conclusions are drawn in
Section 5.

2 Methods

2.1 Value estimation and user modelling

The task can be interpreted as a prediction of the next decision to be made by
the user. Two types of questions can be asked during the process. (i) Which
is the next document to be chosen by the user? (ii) If we rank the links, how
good is this ranking? We shall say that the goodness of our ranking is 90% on
average, if on average only 10% of the documents has been given better ranks
by the learning algorithm than the document selected the user model. That is,
if goodness of ranking is above 90% then about 10% of the documents could be
highlighted.

Figure 1: Value estimation
There are n different classifiers (Ci, i = 1, . . . , n). If a new page is downloaded
then each classifier provides an output, which is often close to +1 or to −1.
These real numbers form the classifiers’ output vector ST = (S1, . . . , Sn). The
value of each document is estimated by means of the weight vector WT =
(W1, . . . ,Wn). The value is given as a scalar product V (document) = ST W.
Users are modelled by their weight vectors.
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Figure 2: Model users
The W and S vectors are normalized to unit length. The thick, black vector
represents the ‘orientation’ of the user. The gray vectors depict the ‘orientations’
of the neighboring documents. A value of a document is cosα, where α is the
angle between the orientation of the user and the document. Note, that the
cluster space is of n dimensions (n = 50).

To allow fast adaptation we assumed that a surfer follows a – possibly chang-
ing – goal and that this goal can be characterized by weighted mixtures of clas-
sifiers. Our assumption allows us – in principle – to tolerate a large number of
possible goals. To give a rough estimation, let us restrict the choice of weights
to ±1. Then the number of possible goals is 250 for 50 classifiers formed by
the 50 clusters. In our experiments we made several restrictions on the possible
goals, but the type of restrictions were not known for the learning algorithm.

The outputs of the classifiers were continuous, mostly falling in the neigh-
borhood of −1 and +1 values.1 The output of a classifier can be interpreted
as ‘reporting’ (‘expressing opinion’) with some uncertainty that a document
belongs to the class or not.

We conducted our experiments using user models. These models were simple
weight vectors, with several restrictions on their values (see Section 2.4). In
some tests the model user could change the topic of interest in order to test the
speed of adaptation: a random change of the weight vector was used to test this
property.

We asked two questions. The first question was how fast and how precisely
the weights of the user model can be estimated during surfing. The second
question was whether different classifiers can describe the same goal.

So in our approach, it is assumed that any user can be modelled by a rel-
evance (or weight) vector WT = (W1, . . . ,Wn). For a model user, the value
of document S is the scalar product of the output vector (ST = (S1, . . . , Sn),
concatenated from the outputs of the classifiers) and the weight vector, where
T denotes transposition. In turn, the value of document S is estimated by our
model as

V (S) =
∑

n

WnSn =WTS (1)

1On our collection from the Geocities database, about 5% of the classifier outputs fell into
the domain (−0.9,+0.9), whereas 95% of the outputs were close to either −1 or +1.
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Figure 1 and 2 depicts value estimation using this weight vector method. The
goal of the user identification algorithm is to identify the weights of the user.

2.2 Databases

To study the problem, first, a model user and a model database were created
and studied. In the second step, we have downloaded a portion of the internet
and tested the highlighting algorithm with a model user on this downloaded
portion. The third case concerned highlighting during real Internet searches
performed by our user model. In this section databases and our classifying
tools are described.

2.2.1 Artificial database generation

A model problem made use of a database defined by an algorithm. Each doc-
ument was represented by an n-dimensional random number (n = 50), whose
components chosen from the set of {−1,+1}, and with an additive superim-
posed real number chosen from a Gaussian distribution of 0.1 variance. This
n-dimensional number was regarded as an output vector of the classifiers for a
’document’. In each trial, we generated data of 100 ‘documents’, ‘linked’ to the
actual ‘document’.

2.2.2 The Geocities database

The downloaded portion of the Geocities2 database contained about 90,000
html documents in 1.5 GB text data. The average branching of one link was
about 3 because not all links were downloaded. The maximum branching ratio
was about 150, whereas several links had zero branching ratios. This broad
distribution resembles to self-evolving networks (such as the web itself), which
follow power-law link distribution. Numbers on branching ratio are obtained
from 20,000 sample documents chosen randomly.

The structure of part of the downloaded Geocities database shown in Fig. 3
was revealed by a ‘breadth first’ crawler. This breadth first crawler collected all
documents linked to a starting page and then all links of all collected documents
and so on. Fig. 3 shows a broad variety of branching ratios, indicating that
the Geocities database itself may assume the form typical to small worlds. (For
details on small worlds, see, e.g., [1] and references therein.)

2.2.3 Tests on the Internet

Highlighting experiments were conducted on the Internet. The starting node
was the main page of Geocities. No other restriction was applied; the user could
surf the whole web.

2http://www.geocities.com
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Figure 3: Structure of the Geocities database
Relative positions of 10,000 documents found on the downloaded Geocities
database using a breadth first algorithm. Circles denote valuable documents
containing the word that was searched for. The size of the circles represent the
number of valuable documents. (See text for details.)

In the Geocities and the Internet tests we assumed that the user could use
the ’back’ button or the ’history’ utility, so any link seen so far is available at
each step.

2.3 Clustering and classification

The downloaded portion of the Geocities database (i.e., 90,000 html documents)
were separated into 50 basic clusters by Boley’s classification method [2] known
to perform well on texts.

For classification of documents in the clusters, the probabilistic term fre-
quency inverse document frequency (PrTFIDF) classification method [8] was
used. The term frequency vector had 4,000 components.

2.4 Restrictions on user models and highlighting methods

In all experiments users did not returned to documents which had been visited
previously.
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2.4.1 The simplest user model on the model database

The user was modelled by a vector with two non-zero components. The values
of these components could be either +1 or −1. The user chose the ‘linked’
document with the largest scalar product between the vector of the user and
that of the ‘linked’ document.

2.4.2 User model and highlighting system on the downloaded database

The user was modelled by making use of the Boley classes (see Fig. 2). The
user was ‘composed’ of two of the classifiers with weights either +1 or −1 (like
in the simplest user model). This vector, which belonged to the convex hull of
the classifiers of the highlighting system, had to be identified by the learning
algorithm, which used all the 50 Boley classifiers for value estimation.

2.4.3 User models and highlighting systems on the Internet

Three different types of experiments were conducted on the internet, which are
depicted in Fig. 5. Each subfigure contains the classifier used to model the user
and the classifiers used for highlighting.3

In the first type of experiments – from now on it will be referred to as scheme
fullC (Fig. 5) – the user was defined by one Boley classifier, with weight value
1. The highlighting classifier system contained all the Boley classifiers, like in
the previous case.

In the second type of experiments, scheme C-1, the same kind of user was
assumed (i.e., user was defined by one cluster), but the classifier which repre-
sented it was taken off from the set of classifiers in the highlighting system. In
turn, value estimation could not use that classifier. The user did not belong to
the convex hull of the classifiers and the learning system had to approximate
the class which defined the user. This second test concerns the case when our
system tries to predict a user ‘who’ does not match any of our classifiers.

Note that the dimension of the term frequency vector is 4,000. In our tests
each classifier (out of the 50 classifiers) was tried as a user. Single value decom-
position (see Fig. 4) demonstrates that the frequency vectors of the 50 classifiers
are not linear combinations of each other, and therefore, perfect identification
is not possible.

In the third type of experiments, the user was not modified. However, moves
of the user were predicted by classifiers developed in a different manner: context
graph classifiers. A novel and efficient approach in Internet crawling [5, 11, 9]
makes use of context graphs of relevant documents. Context graphs are con-
structed as follows: the nodes are documents on the Internet, the oriented edges
are links from one site to another. A context graph is a tree, its 0th level (the
‘root’ level) contains documents from the cluster to which it belongs. Its 1st
level contains the sites which have links pointing to a document from the 0th
level. Its 2nd level includes sites which have links to a document from the 1st

3Note, that the two-classifier user model identification problem is not depicted in the figure.
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Figure 4: Single value decomposition of a matrix made of 50 Boley
classifiers
The size of the matrix is 50×4000, it’s rank is 50. Taking out 1 of the classifiers
the rest can not reconstruct that vector by linear combination of the others.

level, but do not have any link to a 0th level site, and so on. The pseudo-code
of constructing the context graph is provided in the Appendix.

Context graphs were developed for each Boley class. The centers of a Boley
class (as provided by Boley’s method [2]) were chosen as root nodes of the
corresponding context graph. Our search for documents to build the context
graph was successful for 37 classes; in these cases we found more then 100
documents for 2 CF levels around the Boley clusters. To each of the 37 × 3
classes, a classifier was built using the cited PrTFIDF classification method. A
classifier represented a decision surface between documents of a cluster and the
other documents which did not belong to this cluster.

The user was modelled by one of the Boley clusters, and the classifiers belong-
ing to the context graph of this Boley cluster were removed from the classifier
vector of the highlighting system. The rest of the PrTFIDF classifiers (i.e, 36×3
classifiers) were used to predict the choices of the model user (scheme CF-3 of
Fig. 5). These classifiers were inserted into the value estimation algorithm to
be described below.

2.5 Adaptation

2.5.1 On-line reinforcement learning (RL)

RL is the state-of-the-art method in value estimation and it can deal with func-
tion approximators.4 The RL algorithm for learning linear weighting is relatively

4For an excellent recent introduction see [15]. Utilization of RL principles in internet
surfing can be found in [14, 11].
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Figure 5: Schemes of the studies.
In all cases the user was one of the Boley classifiers. Top (scheme fullC): every
Boley classifier takes part in highlighting, middle (scheme C-1): every Boley
classifier except the user’s classifier takes part in highlighting, bottom (scheme
CF-3): every Boley classifier and the belonging context classifiers except those
of the user take part in highlighting. Note, that the two-classifier user model
identification problem is not depicted in the figure.
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simple:
δ(t+ 1) = r(t+ 1) + γWT S (t+ 1) − WT S(t) (2)

W(t+ 1) = W(t) + α δS(t+ 1) (3)

where
V (S(t)) = WT (t)S(t)

V (s) ∈ R is the estimated value of documents,W(t) = (W1(t), . . . ,Wn(t)) is the
estimated weight vector (or preference vector) of the user (n = 50) at surf step t,
S(t) = (S1(t), . . . , Sn(t)) is the output vector of the classifiers for the document
visited at surf step t, γ is the discount factor, r(t+ 1) is the immediate reward
after the (t + 1)th step is made by the user, δ(t + 1) is the error of the value
estimation, α is the learning rate, which may depend on time, and Eq. (3) is
the update rule of the weight vector. The immediate reward can be determined
by the designer of the learning system. In our case the immediate reward was
zero if WT (t)S(t + 1) was the maximum value among all of the neighboring
documents. Otherwise, r(t + 1) = −1 was utilized. Different discount factors,
including no discount (γ = 1.0) were tried. RL warrants improved evaluation of
a document visited by the user under certain conditions [15]. Conditions of RL
include that the states are known and are Markovian, reward could be stochastic
but the distribution function may not change during time. These conditions are
not met in web surfing.

2.5.2 Learning with moving window technique

The second method utilized an exponentially weighted update rule:

W(t+ 1) = (1− α)W(t) + αS(t+ 1)

Here α was decreased with 1/(κ∗ t) and κ = .1 was chosen. This rule minimizes
the mean square error J = 1

2
||W − S||2 according to the Robbins-Monro crite-

rion. The problem with this rule is as follows: weights adapt to the input even
when the weights are perfect. In turn, internet regions on different topics may
spoil the perfect weight vector.

2.5.3 Learning with value estimation error modulated moving win-
dow (VEMW) technique

The third method avoids uncertainties about the learning rate. The advantage of
the method is that the learning rate becomes zero automatically if no learning is
necessary. This third method is a self-consistent combination of value estimation
and the moving window method. The algorithm is as follows:

δ(t+ 1) = WT (t) (S∗(t+ 1) − S(t+ 1)) (4)

W(t+ 1) =
(1− αδ(t+ 1))W(t) + αδ(t+ 1)S(t+ 1)

|(1− αδ(t+ 1))W(t) + αδ(t+ 1)S(t+ 1)|
, (5)
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where α was set to constant to follow online changes, S∗(t + 1) is the best
selection according to the value estimation, S(t+1) is the selection of the user,
and δ(t+1) is the value estimation error computed at surf step t+1. It is easy
to see that the estimated value of the user selected link will be increased by
Eq. (5), provided that the S vectors at each step are normalized |S(t)| = 1 for
t = 1, 2, .... In this case, W(t+ 1)TS(t+ 1) ≥W(t)TS(t+ 1).

If the user is properly represented by the learned weights, no further weight
tuning may occur under this learning rule. Although the algorithm estimates
the value, it is not making use of cumulated long-term value estimations, thus
it is not an exact RL method. It is more closely related to approximations of
the value function like that of STAGE [3]. Connection to RL methods will be
provided in Section 4.

3 Results

3.1 Results on artificial ‘documents’ and ‘links’

Computer runs were averaged over 230 independent simulations. In each simu-
lation 200 steps were executed by the model user. Averaged results are shown
in Fig. 6. In each computer run we assumed that the user’s behavior changes at
discrete time steps. For the sake of visual inspection, the occurrences of changes
were restricted to the 50th, 100th, and 150th time steps. The figure depicts the
average goodness of ranking.
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Figure 6: Comparison of different methods.
Choice of model user is averaged over 230 generation of 200 link-sets with 100
links in each set. The graph shows the goodness of ranking. The higher the
number, the better the highlighting. Solid line: update using VEMW, dashed
line: moving window update, dotted line: reinforcement learning. User switched
weights randomly in every 50 steps. In the moving window update experiment
the learning rate was proportional to 1/t.
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Reinforcement learning performs rather poorly (dotted ‘line’). Performance
of RL improves rather slowly if there is any improvement at all (Fig. 6). Note,
that a goodness value of 50% means that on average, half of documents have
better ranking. In turn, random choice from the two options (i) highlight and
(ii) do not highlight has a goodness value of 50%.

The moving window estimation is relatively good (dashed line). This method
is sensitive to the choice of the learning rate. This can be seen clearly in Fig. 6,
where the 1/t behavior of the learning rate provides striking deterioration of
performance. The moving window method falls below the VEMWmethod (solid
line). Of particular importance is the first 25 steps of our experiments. Within
this time domain, the learning rate of the moving window method changes
quickly. According to the figure, the initial rise of the moving window method
is faster than that of VEMW method. This indicates that the learning rate
chosen for the VEMW method is suboptimal. The sharp rise of the moving
window saturates and falls below that of the method using value estimation
error modulation.
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Figure 7: Value-estimation error as a function of time.
Changes of the weight vector of the user model occur in every 50th step in
the experiment. Value estimation error can be used to monitor changes of the
behavior of the user.

One can argue that an optimal choice of the learning rate is not possible.
The choice of large rates allows fast adaptation but prohibits fine tuning. On the
other hand, small rates allow for fine tuning but may deteriorate performance
when changes are fast – as it is demonstrated by Fig. 6. Moreover, there is a
pitfall for this moving window estimation: this method modifies the weights in
regions where all estimated values are low (i.e.,where all neighboring documents
have low values for the user). In such regions highlighting is not relevant. Also,
no change of weights is necessary in regions where the error of value estimation
is small. The VEMW adaptation (Eq. 4) avoids these problems by construction.

Value-estimation error has other advantages, .e.g., it can serve as an indicator
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to measure changes of user’s behavior. This is demonstrated in Fig. 7

3.2 Results on the downloaded portion of the Internet

The algorithm had to estimate the user’s weight vector, which was changed in
every 50th step. Experiments were conducted on the downloaded part of the
Geocities database, the adaptation method was the VEMW technique. Aver-
aged results are shown in our figure (Fig. 8). Continuous improvement could be
reached only by assuming that links of visited documents are available at each
instant (Fig. 8). Without this assumption, performance was compromised given
the small average branching ratio (about 3) of our Geocities database. This is
so, because searches were initiated from random documents. Small branching
ratio and a wrong starting region together prohibit the estimation of the interest
of the user: selections could be meaningless under these conditions. The ‘back’
button (or the ‘history’) makes a difference: there is a clear improvement of es-
timations beyond the 50th and the 100th step. In turn, given the small average
branching ratio of the web (around 7), a good highlighting ‘agent’ provides easy
access to the history of surfing.
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Figure 8: Results on the Geocities database.
The simulated user had two nonzero values among the components of vector
W (one of the components was set to +1, another component was set to −1
and the rest of components were set to zeros). Learning was allowed to tune
all components. It was assumed that the ‘back’ button of the browser is easily
available and that possible links are accumulated during surfing. (Note that
the average branching ratio of the downloaded part of the Geocities database
was about 3.) New weight vector was selected for the ‘user’ in each 50th step.
Results are shown for the update using VEMW.
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3.3 Results on the Internet

Four different studies were conducted on the Internet (see Section 2.4.3), each
of them used the VEMW technique.

In Study 1 and in Study 2 schemes fullC and C-1 were applied, respectively.
Complete tests were made, all classifiers belonging to the Boley clusters were
tried as user models in each study. Averaged results (with error bars repre-
senting variances) are depicted in Fig. 9(a) and (b). In Study 3, scheme CF-3
was tested. All the 37 classifiers which had CF clusters were tried as users.
Averaged results are shown in Fig. 9(c).

Variances are smaller than standard deviations, which – if centered around
the average values – would represent a region sometimes beyond 100%. This
occurs, because performance, which is good on average, was heavily corrupted
from time to time. To show this, performances and changes of the weights are
shown in Figs. 10(a) and (b) for the best and for the worst cases of Study 2.

Subfigures of Fig. 9 demonstrate that performances are similar for the three
different user types. However, – according to Figs. 10(a) and (b) – performance
changes from user to user.

In Study 4 we repeated Study 1, but the user was randomly changed in every
50th steps, to study the speed of the adaptation. Results are shown in Fig. 10(c).
Note that the initial transient is relatively long at start, but it becomes much
shorter (2 steps) at later changes of the user, as shown by the inset of Fig. 10(c):
at the beginning there are not enough good links to choose from.

4 Discussion

4.1 Evaluation of the results

4.1.1 Theoretical considerations

Moving window estimation was relatively good. It is, however, strongly pa-
rameter dependent as it is demonstrated in Fig. 6. The learning rate of the
VEMW method is suboptimal as it can be seen from the initial rises of the two
curves in Fig. 6 between step number 0 and 10. Nevertheless, modulation of the
learning rate using the value estimation error helps to overcome the parameter
uncertainties of the moving window estimation.

From the theoretical point of view, RL estimates the error of the value based
on experienced quantities:

δ(t+ 1) = r(t+ 1) + V (Sexperienced(t+ 1)) − V (Sexperienced(t)) (6)

where γ was set to one, quantities in the brackets denote step number or time,
Sexperienced(t) denotes the experienced state (i.e., the actual node) at time t,
V (.) denotes the value function, and r(t+ 1) is the immediate reward received
after the step was made at time t. On the other hand, the theoretical formulation
of our VEMW update rule (Eq. 4) computes the estimation error as follows:

δ(t) = V (Sexperienced(t+ 1)) − V (Sexpected(t+ 1)) (7)

21



0

50

100

D
el

ta
 &

U
se

r’s
 s

el
ec

tio
n 

(%
)

(b)
0

50

100
(a)

D
el

ta
 &

U
se

r’s
 s

el
ec

tio
n 

(%
)

20 40 60 80 100
0

50

100

Step number

D
el

ta
 &

U
se

r’s
 s

el
ec

tio
n 

(%
)

(c)

Figure 9: Performances. (a): User is from the convex hull of the Boley
classifiers, (b): the classifier of the user is excluded from Boley classifiers used
for estimation, and (c): the set of classifiers is extended by classifiers belonging
to levels of context graphs. Upper curves: performances. lower curves: value
estimation errors. Error bars denote variances.
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Figure 10: Individual cases. (a): The best highlighting result on the Internet
for the case (b) of Fig. 9, (b): highlighting with the worst result on the Internet
for the same, (c): case (a) of Fig. 9 with a user changing behaviors. Inset: fast
adaptation at step number 100.
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where subscript ‘expected’ refers to the state having the best estimated value
out of the possible next states. It is intriguing that the learning rule based on
this error estimation is much faster than the RL method. However, this is not a
real drawback of RL, the VEMW learning can be recast as on RL method. To
this end, one needs to replace on-line reward of Eq. (6) with ‘expected reward’:

rexpected(t+ 1) = V (Sexperienced(t)) − V (Sexpected(t+ 1)) (8)

In this case, Eq. (2( and Eq. (7) become identical. V (Sexpected(t+1)) is available
in the highlighting problem. However, it is not available in most RL methods.
It is available only if planning, or evaluation of future states are possible. This
is the case of finite state games, e.g., chess or backgammon.

4.1.2 Highlighting using Boley clustering

Performance was similar for the users constructed from Boley classifier either
when all Boley classifiers, the other Boley classifiers and the other Boley classi-
fiers together with many additional CF classifiers were available. In case when
the approximation had the potential to fully identify the user (i.e., when lin-
ear combination of Boley classifiers were approximated by all Boley classifiers)
performance was somewhat better. Few notes should be made here.

The increase of the number of classifiers did not improve performance. More-
over, the weights and the changes of the weights were similar for the 50 Boley
classifiers and for the case when CF classifiers were included (Fig. 11). In turn,
the set of 50 Boley classifiers seems a reasonable choice.
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Figure 11: Weights and changes of weights
The sum of the absolute values of the weights (upper curves) and the sum of the
absolute values of the changes of the weights are depicted for the three different
experiments. (CG: context graph)
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Performance was never perfect, although it could have been, at least for the
case of scheme fullC. This may be due to noise and/or to changing local minima
in parameter space, which may arise in a particular domain of documents. Part
of the problem originated from the learning rule itself as it is discussed below.

Performance could be improved considerably by modifying the learning rule.
The point is that drastic changes in the weight vector may occur when there is
no good document at all and the ranking of both the user and the highlighting
system is, in effect, random. Large estimation errors may arise, but if the pref-
erences of the user are steady then the weight vector should not be modified.
However, similar situation will arise if the behavior of the user changes. The
value estimation error will be large, and in this case the weight vector should be
modified. These are contradictory requirements for a learning system. One pos-
sible solution to this dilemma is to maintain two parallel estimations. The first
estimation, which is identical to the one we used, could work in the background.
The visible estimation would neglect changes in poor (low value) regions. The
learning algorithm could ‘switch’ between the two estimations based on their
predictive powers. In other words, if large changes in the weight vector occurs,
then learning is granted only if performance is improved.

Another point concerns the large differences between different Boley clusters.
For a uniform and improved performance the contents of these clusters need to
be uncovered. We have noticed that there is a strong topic specificity whether
a given user model can followed or not. This issue requires further studies.
Pre-clustering of users could be a solution here.

4.2 Differences among highlighting, monitoring and crawl-

ing

Highlighting can help to review an internet site and its immediate environment
quickly. As such, it can decrease search time. Moreover, it may decrease traffic
at portals or gateways and could serve as the basis of dynamical home pages.
Highlighting can be very efficient but may miss information. Highlighting re-
quires fast adaptation because it serves the user during an exploration. During
surfing, both the topic of interest of the user and place of valuable information
could be unknown.
Monitoring is different. Monitoring assumes that the place of information

is known. It pays constant attention to a given site or a particular set of links.
Monitoring collects recently published (‘breaking news’ type) information. In
turn, monitoring will not miss information at the known places. However, mon-
itoring may increase internet traffic and may miss information which appear at
new locations. Monitoring may not require adaptation.

Intelligent crawling is somewhere in between highlighting and monitoring.
In this case, the topic of the search is more or less known, whereas the place of
novel information is considered unknown. Adaptation is necessary under this
condition, because different regions of the internet require different evaluations,
as it has been demonstrated in the literature. [11, 9].
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Highlighting, crawling and monitoring are all important ingredients for find-
ing novel information. On the other hand, such tools are not to replace but to
complement classical browsers, search tools and databases. The importance of
these novel tools is striking when fresh information is searched for. Combina-
tion of search engines, crawlers, site monitors and highlighting techniques are
all needed for efficient fast information access.

For example an intelligent crawler may serve the user better if it performs
highlighting when the user is surfing and performs reinforcement based docu-
ment collection when the user is absent. The working of an intelligent crawler
equipped with highlighting option is depicted in Fig. 12.: One might say that
the list of hits and misses used to reinforce the crawler is closely related to
bookmarks and making notes about misleading information, respectively. If re-
inforcement is given carefully, the crawler can collect relevant documents during
the absence of the user and the user may have more time for explorative surf-
ing. The presence of the explorative user, who may change his/her behavior
frequently, opens the demand for interactive highlighting to assist exploration.

Tuning of
weights (W)

Intelligent
crawler

Sorting, coloring
of links

User is surfing,
makes choices

Chosen

link

Evaluation

of links

Ordered

links

Figure 12: Scheme of interaction amongst user, intelligent crawler and
highlighting systems
After the user selected his/her step one can estimate or update his/her weight
(relevance) vector (W ). With this new estimation, documents neighboring the
actual link can be analyzed and ranked (ordered, sorted and color-coded). Rank-
ing can be offered directly (via a list), or indirectly, via coloring of links. An
intelligent crawler can ‘travel’ over the internet and can collect possibly rel-
evant documents. Collected documents can be inserted into a list of offered
documents. Any good (bad) document can be sent to the intelligent crawler for
positive (negative) reinforcement to improve crawling.

5 Conclusions

Users surfing on the Internet can be assisted in various ways. Intelligent crawlers
can perform pre-filtering. On-line assistance, however, requires fast adaptation
of such pre-filtering methods. In this paper a pre-trained, modifiable and extend-
able classification scheme was suggested for on-line guidance using exploration
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of the neighborhood of user-selected documents. It was shown that on-line rein-
forcement learning performs poorly relative to moving window methods. Value
estimation error modulated moving window, which is closely related to reinforce-
ment learning, however, showed improved efficiency. Both the artificial and for
the Internet studies, highlighting could filter out about 80% of the documents
in less than 10 steps. Sometimes, this number was as low as 2. Future research
is needed to discover the ‘human factor’, when the highlighting agent interacts
with real users.
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7 Appendix

Pseudo-code for context graph generation

Building Context Graph

pseudo-code

1. Initialization

root docs = documents in the cluster
new empty context graph (CG)
branching ratio ← n (n = 2.5)
min number of root docs := m (m = 100)
0th level of CG := 0th level of CG + root docs
sort root docs by its distances from the cluster center

2. Constructing the Context Graph

for the first 200 root docs:
if CG is Ready then

remove documents from the 0th level of CG which doesn’t linked by any
document in the 1st level of CG

CG is ready, STOP
page := next doc in root docs
Search For Backward Links To Level 0(page)
for all new d documents in the 1st level of CG:

Search For Backward Links To Level 1(d)
3. Checking the size of Context Graph

if number of documents in each level of the CG > 100 then

remove documents from the 0th level of CG which doesn’t linked by any
document in the 1st level of CG

CG is ready, STOP
else Building of CG failed

end Building Context Graph
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function CG is Ready

return (size of the 0th level of CG >= min number of root docs and

size of the 1st level of CG >= (size of the 0th level of CG) * branching ratio and

size of the 2nd level of CG >= (size of the 0th level of CG) * (branching ratio)2)
end function

proc Search For Backward Links(level, doc)
for each l link in doc:

if level=0 and there is a link on l to doc then

Add To Context Graph(l)
if level=1 and

there is a link on l to any document in the 1st level of CG then

Add To Context Graph(l)
end proc

proc Add To Context Graph(doc)
for each level i 1 to 2:

if there is a link in doc to a document at the (i-1)th level and

the number of documents pointing to that document < 2*branching ratio and

the average number of documents pointing to a document < branching ratio and

the CG doesn’t contain doc at smaller levels then

add doc to the ith level of CG
end proc
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